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THE MOMENT OF INERTIA OF 
MAGIC SQUARES

Magic squares of order N are composed of the N are composed of the N
entries 1, 2, ... , N2N2N  arranged on a square unit 
lattice such that the sum of all entries along the 
rows, columns and main diagonals are equal to 
the magic constant of the square. An example of 
a magic square is shown below:

(1)

The magic constant can be easily found by sum-
ming the values 1, 2, ... , N2N2N  and dividing by N, the 
number of rows and columns to fi nd

(2)

For N = 3, the magic constant is equal to 15. N = 3, the magic constant is equal to 15. N
Though there is only one magic square of order 3 
apart from trivial rotations and refl ections of Equa-
tion (1), the number of squares per order quickly 
skyrockets. There are 880 distinct order-4 squares, 
and 275 305 224 distinct order-5 magic squares. 

If we interpret magic squares as being com-
posed of masses proportional to the entries of 
the squares, we can determine their moment of 
inertia about a given axis of rotation. The scalar 
moment of inertia I is found by summing I is found by summing I mir2r2r i for 
each entry i, where ri and mi are the distance from 
the axis of rotation and the mass, respectively, of 
entry i. If we consider an axis of rotation through 
the middle row (in the case of even-order squares, 
the rotation axis lies between the two middle 
rows) and its counterpart through the middle 
column, it is obvious that the moments of inertia 
should be equal, since there are an equal number 
of rows/columns of the same total mass, each 
equally displaced from these axes. We can use 
the perpendicular axis theorem, which states:

(3)

Since IxIxI  = x = x IyIyI , we have IzIzI  = 2z = 2z IxIxI . If we place an 
axis parallel to one edge of the square, it is easy to 
derive a general formula for the moment of iner-

tia about that axis. Because we know the sum of 
values in a line and the spacing of the masses, we 
can fi nd a formula in terms only of N. From here, 
we can use the parallel axis theorem to shift the 
axis so it passes through the centre of the square. 
Employing the perpendicular axis theorem, we 
fi nd the simple formula:

(4)

For N = 3, Iz = 60, which can be verifi ed z = 60, which can be verifi ed z

explicitly using Equation (1). This is the only 
other property of magic squares, aside from the 
line sum, which is solely dependent on the order 
of the square, N. It is also worth noting that since 
we have only made use of the row and column 
line sums, the formula is general for semi-magic 
squares as well. These types of squares have 
only row and column line sums, but no restric-
tion on the main diagonal sums. Equation (4) is 
consistent for large N with the moment of inertia N with the moment of inertia N
of a continuous plate with mass M = M = M NC2 and 
L = L = L N, reducing to I = I = I 1/6 ML2. Because of the 
simple application of inertia principles and 
mathematics, this derivation is suitable for fi rst-
year physics students. 

In addition to the derivations shown above, 
magic squares have a few practical applica-
tions, including uses in cryptography and image 
processing. When treated as matrices, magic 
squares also serve as exceptional examples of 
some advanced linear algebra theorems.

THE INERTIA TENSOR OF 
MAGIC CUBES

We can extend the concept of a magic square 
into the third dimension, yielding a magic cube. 
These cubes have constant Row, Column, Pillar 
(referred to as RCP) and main diagonal line sums. 
An example is presented below.

(5)

Magic cubes are composed of entries 1, 2, ... , 
N3N3N , and in an analogous manner to the procedure 

for magic squares, we can fi nd a formula for the 
line sum:

.                                           (6)

Since each of these layers is a magic square, 
though not of consecutive integers, it is easy to 
fi nd the moment of inertia of a single layer as an 
extension of Equation (4), and thus, N stacked N stacked N
layers give the moment of inertia of a magic 
cube:

         .                           (7)

By RCP symmetry, IxIxI  = x = x IyIyI  = IzIzI . More formally, 
the inertia tensor is also diagonal (the off-diago-
nal elements vanish) with the origin of co-ordi-
nates at the centre of the cube. This shows that 
magic cubes have the same inertial form as a 
spherical top.

CONCLUSIONS

Throughout our discussion of magic cubes, we 
have considered the entries in the magic cube 
only as masses. If we consider the entries instead 
as charges, we can neutralize the cube by sub-
tracting the average entry from the rest of the 
cube. This will have the effect of causing the fi rst 
three multipole moments of the charge distribu-
tion to vanish, with only off-diagonal elements of 
the octupole tensor remaining. To third order, a 
discrete charge distribution in the form of a magic 
cube will produce no electrical potential.

Just as magic squares are easily extended into 
the third dimension to create a magic cube, magic 
cubes can be extended further into the fourth 
dimension, forming magic hypercubes. These 
can, in fact, be generalized into N-dimensions, 
though these objects have not been the focus of 
our studies, since the inertia tensor and multipole 
expansion exist only in three dimensions.

For more information on magic squares, magic cubes 
and the inertia tensor, see:
A. Rogers and P. Loly. American Journal of Physics.

(2004) 72, pp. 786–789.
Clifford A. Pickover, The Zen of Magic Squares, Circles, 

and Stars. Princeton University Press. 2002.
Walter Trump, http://www.trump.de/magic-squares
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